bestcarservice
CSS Drop Down Menu by PureCSSMenu.com

электронная система управления

Контроллер системы управления двигателем

Главная часть системы впрыска — контроллер системы управления двигателем. Его иногда еще называют “мозгами”, как бы подчеркивая важность той работы, которую он выполняет. Контроллер (от английского control — “управление”) является коммуникационным и вычислительным центром системы — в зависимости от сигналов датчиков, по заранее определенным алгоритмам, он выдает управляющие воздействия на исполнительные устройства системы управления.
Конструктивно контроллер выполнен в виде металлического корпуса, внутри которого находится печатная плата с электронными компонентами. Жгут проводов от датчиков, исполнительных устройств и бортовой сети автомобиля подключается к контроллеру многополюсным штекерным разъемом. Контроллер системы управления двигателем работает в тяжелых условиях: широкий диапазон температуры окружающей среды (от —40 до +80оС); широкий диапазон влажности воздуха; высокая вибрация и т. д. Поэтому особые требования предъявляются к электронным компонентам и конструкции контроллера. Такие же высокие требования предъявляются к электромагнитной совместимости: чувствительности к внешним помехам и ограничению излучения собственных высокочастотных помех.
Если рассматривать структуру современного контроллера, то видно, что он состоит из следующих основных частей: — процессорная часть (микроЭВМ);
— формирователи входных сигналов;
— формирователи выходных сигналов;
— источник питания.

Процессорная часть контроллера

Это именно та часть, где происходит все самое главное в работе контроллера. Основой процессорной части является однокристальная микроЭВМ. Она называется так из-за того, что большинство компонентов микропроцессорной структуры находятся на одном кристалле микросхемы (чипе). В контроллерах СУД используются 8-, 16- или 32-разрядные микроЭВМ. Разрядность — это количество бит информации, с которыми она оперирует. Основные компоненты микроЭВМ:
— центральный процессор. Производит выборку команд и данных из памяти программ и памяти данных, производит арифметические и логические операции над данными, управляет сигналами на внутренней шине адреса и данных.
— Постоянное запоминающее устройство (ПЗУ). То место, где хранится программа и данные в виде констант. Программа — переведенная на язык машинных кодов микроЭВМ совокупность всех алгоритмов управления СУД. Данные — калибровочные таблиц константы, которые участвуют в процессе расчетов или выбираются как управляющие параметры. Для разных типов СУД, использующих одинаковые контроллеры, записывается своя программа или свой набор данных. Информация в ПЗУ может храниться сколь угодно долго, независимо от того, работает контроллер или хранится на складе. Для записи программы и данных используются специальные устройства, которые называются программаторами.
— Оперативное запоминающее устройство (ОЗУ). Область памяти, где хранятся данные, которые в процессе работы изменяются. Это могут быть промежуточные результаты вычислений или значения, полученные от датчиков. В отличие от ПЗУ, информация в ОЗУ теряется после выключения питания контроллера. Чтобы сохранить данные, которые накапливаются в процессе работы контроллера и участвуют в расчетах как параметры адаптации алгоритмов к конкретному двигателю, в контроллерах существует так называемое энергонезависимое ОЗУ. Оно запитывается от отдельного источника питания, подключаемого непосредственно к аккумуляторной батарее. В режиме хранения это энергонезависимое О3У потребляет очень незначительное количество энергии, что не может привести к разряду батареи, так как ток потребления в этом случае сравним с током саморазряда. Недостатком такого типа энергонезависимого ОЗУ является то, что процесс адаптации возобновляется каждый раз после отключения питания от аккумулятора. На старых типах СУД так оно и было, и в “Руководстве по эксплуатации” существовало строгое предупреждение о недопустимости отключения. Для устранения этого недостатка в современных контроллерах СУД используют новый тип энергонезависимого ОЗУ, который для хранения информации вообще не требует никакого дополнительного источника питания.
— АЦП — аналогово-цифровой преобразователь.Однокристальная микроЭВМ не может работать с аналоговыми сигналами, поэтому в АЦП происходит дискретная выборка мгновенных значений непрерывного аналогового сигнала и преобразование их в цифровой код (обычно 8 или10 двоичных разрядов).
— Порты ввода/вывода.Служат для организации взаимодействия микроЭВМ с другими компонентами контроллера. Через них происходит считывание входных и выдача выходных сигналов и информации.
— Таймеры/счетчики — это устройства, необходимые для измерения интервалов времени или подсчета числа событий.
— Генератор тактовой частоты. Вырабатывает тактовые импульсы синхронизации работы всей системы. От точности его работы зависит точность измерения всех интервалов времени.

Формирователи входных сигналов

Сигнал от датчика — это не что иное, как преобразованное в электрический сигнал значение физической величины (например, температуры охлаждающей жидкости). В контроллере СУД этот сигнал проходит через формирователь, где происходит согласование уровней (усиление или ослабление) — преобразование до той величины, которая необходима для нормальной работы процессорной части. Кроме того, входные формирователи выполняют защитную функцию от перенапряжения. Различают формирователи дискретных, аналоговых и частотных сигналов.
Дискретные сигналы — это сигналы, значение которых во времени меняется скачкообразно. Например, сигнал включения зажигания или сигнал запроса кондиционера. Такие сигналы поступают после преобразователей напрямую в процессорную часть на входы портов ввода/вывода.
Аналоговые сигналы — это сигналы, значение которых во времени непрерывно меняется. Например, сигнал с датчика массового расхода воздуха или с датчика положения дроссельной заслонки. Эти сигналы после предварительной обработки поступают в процессорную часть на входы АЦП.
Частотные сигналы — это сигналы, частота изменения которых несет информацию об изменении физической величины, измеряемой датчиком. Например, частота сигнала с датчика положения коленвала пропорциональна скорости вращения двигателя. Для дальнейшей обработки таких сигналов важно, чтобы эти сигналы не имели импульсных помех. Во входном формирователе частотный сигнал ограничивается по амплитуде (амплитудное значение такого сигнала не несет необходимой информации) и поступает в процессорную часть на вход таймера/счетчика.

Формирователи выходных сигналов

Эти формирователи преобразуют сигналы с портов ввода/вывода процессорной части в сигналы достаточной мощности для непосредственного управления исполнительными устройствами. Выходные формирователи — это современные микросхемы (драйверы), которые, кроме основных функций, усиления по мощности, еще выполняют функции защиты выходов контроллера от замыкания на массу или на плюс батареи, а также от перегрузки. Эти драйверы называют “интеллектуальными”, так как в случае ненормальной работы, когда срабатывают защитные функции, они информируют процессор об этом. В контроллере используются различные типы формирователей выходных сигналов в зависимости от необходимой мощности. Формирователь канала диагностики необходим для согласования уровней электрических сигналов диагностического оборудования с уровнями сигналов процессора.

Источник питания

Поскольку процессорная часть и микросхемы формирователей имеют рабочее напряжение питания +5 вольт, в контроллере предусмотрен источник питания. Он выдает стабильное напряжение при изменении напряжения в бортовой сети в широком диапазоне. Просадка напряжения до 6 вольт во время холодного пуска двигателя с не полностью заряженной батареей не приводит к отключению контроллера СУД. От внутреннего источника питания контроллера также запитываются некоторые датчики системы управления.
Датчики системы управления двигателем

Датчик положения дроссельной заслонки (ДПДЗ)

Сигнал ДПДЗ используется контроллером СУД для расчета углового положения дроссельной заслонки. ДПДЗ монтируется на дроссельном патрубке, при повороте дроссельной заслонки ее ось передает свое движение на датчик. ДПДЗ представляет собой резистор потенциометрического типа. На одно плечо потенциометра подается опорное напряжение с контроллера, второе плечо соединено с “массой”. Третий контакт датчика соединен с подвижным контактом потенциометра. Выходной сигнал ДПДЗ изменяется пропорционально углу поворота дроссельной заслонки. При полностью закрытой дроссельной заслонке напряжение датчика составляет 0,35—0,7 В, а при полностью открытой — 4,05—4,75 В. Минимальное значение напряжения датчика, определяемое контроллером на режиме холостого хода, используется как начало отсчета, то есть 0% открытия дроссельной заслонки. По сигналу ДПДЗ контроллер определяет текущий режим работы двигателя. Полностью закрытая дроссельная заслонка соответствует режиму холостого хода. При больших углах открытия дроссельной заслонки происходит переход на мощностной режим работы, при котором достигается максимальный момент или максимальная мощность двигателя. При промежуточных значениях открытия дроссельной заслонки (режим частичных нагрузок) контроллер поддерживает стехиометрический состав топливовоздушной смеси. По сигналам ДПКВ и ДПДЗ контроллер определяет нагрузку двигателя. Этот параметр используется для расчета топливоподачи и УОЗ в случае неисправности ДМРВ.
Для компенсации кратковременного обеднения топливовоздушной смеси при быстром открытии дроссельной заслонки контроллер рассчитывает добавку к базовой топливоподаче, используя информацию о приращении сигнала ДПДЗ.

Датчик детонации (ДД)

В двигателях внутреннего сгорания с искровым зажиганием при определенных условиях могут возникнуть аномальные (“звенящие”) процессы сгорания, которые приводят к снижению мощности и коэффициента полезного действия двигателя. Это нежелательное явление называется детонацией и является следствием самовоспламенения еще не охваченной пламенем свежей топливовоздушной смеси.
Нормально начавшийся процесс сгорания топливовоздушной смеси и сжатие ее поршнем обуславливают повышение давления и температуры в камере сгорания, которые могут вызывать самовоспламенение оставшихся газов (еще не сгоревшей смеси). При этом скорость распространения пламени может быть выше 2000 м/с, в то время как скорость нормального сгорания составляет около 30 м/с.
При таком ударном сгорании в камере создается высокое давление. При длительной детонации повышенное давление и термическая нагрузка могут привести к механическим повреждениям прокладки головки блока цилиндров, поршня и головки в зоне клапанов. Характерные колебания детонационного сгорания регистрируются датчиком детонации, преобразуются в электрический сигнал и передаются в контроллер СУД. Конструктивно датчик детонации представляет собой акселерометр, то есть пьезокерамический прибор, преобразующий энергию механических колебаний блока цилиндров двигателя в электрический сигнал. Другими словами, это приемник звуковых колебаний в твердых телах.
При возникновении вибрации инерционная масса воздействует на пьезоэлемент с соответствующими частотой и усилием, в результате возникновения пьезоэффекта на контактах появляется электрический сигнал. В контроллере выходной сигнал датчика детонации подвергается специальной обработке для обнаружения момента возникновения детонационного сгорания топливовоздушной смеси.
Большое значение имеет место установки датчика детонации на двигателе. При его выборе руководствуются следующими критериями: — сигналы детонации от каждого цилиндра не должны сильно различаться по уровню;
— уровень сигнала должен иметь достаточную для его дальнейшей обработки величину;
— помехи, возникающие от других шумов работающего двигателя, должны быть минимальными.
Важными характеристиками датчика детонации являются: — температурный диапазон. Датчик должен быть работоспособным до 150—200оС
— собственная резонансная частота. По принципу определения наличия детонации различают системы с резонансными и широкополосными датчиками детонации. В системах с резонансным датчиком значение собственной резонансной частоты совпадает с частотой детонационных колебаний в цилиндре, а в системах с широкополосным датчиком собственная резонансная частота датчика значительно выше, но на частотной характеристике существует равномерный участок, лежащий в диапазоне частот детонационных колебаний;
— коэффициент преобразования. Показывает, как соотносится амплитуда выходного сигнала с амплитудой детонационных колебаний в месте установки датчика (mv/g).

Датчик фаз (ДФ)

Распределительный вал управляет впускными и выпускными клапанами двигателя. Частота его вращения в два раза ниже, чем частота вращения коленчатого вала. Когда поршень приближается к верхней мертвой точке, то по положению коленчатого вала невозможно определить, на каком такте работы двигателя это происходит: на такте сжатия с последующим воспламенением топливовоздушной смеси или на такте выпуска отработавших газов. Эта информация актуальна для системы фазированного впрыска, где подача топлива осуществляется через одну форсунку в тот цилиндр, где происходит такт сжатия непосредственно перед открытием впускного клапана.
Чтобы контроллер мог четко определять, какой из форсунок ему надо управлять в данный момент, используется сигнал датчика положения распределительного вала. Его еще называют датчиком фаз.
В системах управления двигателем автомобилей ВАЗ используется датчик на основе эффекта Холла. Вам, наверное, известен принцип работы бесконтактной системы зажигания карбюраторных двигателей ВАЗ-21083. Так вот, там, в распределителе зажигания, устанавливался датчик управления коммутатором, который также работал на основе эффекта Холла. Он регистрирует прохождение металлической шторки с прорезями, которая связана с распределительным валом, и подает сигналы управления коммутатору. Шторка проходит между постоянным магнитом и самим датчиком и прерывает магнитные линии постоянного магнита (загораживает). Когда между магнитом и датчиком находится прорезь, то датчик вырабатывает специальный сигнал (импульс), который после небольшой обработки и служит управляющим для коммутатора.
По такому же принципу работает и датчик фаз, с той лишь разницей, что шторка устанавливается на шкиве привода распредвала двигателя и имеет только одну прорезь. Конструкция шторки такова, что ДФ формирует импульс в тот момент, когда такт сжатия приходится на первый цилиндр. Параметры импульса датчика фаз таковы: прорезь напротив датчика — низкий уровень (напряжение близко к 0 вольт), иначе — высокий уровень (напряжение близко к напряжению бортовой сети).
Такую конструкцию имеет датчик, который применяется в системе управления двигателем ВАЗ-2112 (16 клапанов), и он называется щелевой. На двигателях ВАЗ-2111 и ВАЗ-21214 используется датчик фаз торцевого типа. Он также работает на эффекте Холла, только реагирует не на прорезь в шторке, а на специальную задающую метку, которая крепится на распредвале (двигатель ВА3-2111) или на шкиве привода распредвала (двигатель ВА3-21214). Расстояние между меткой и датчиком гораздо меньше расстояния между датчиком и распредвалом. При приближении метки к датчику изменяется внутреннее магнитное поле датчика, и он формирует синхронизирующий импульс. На двигателях ВАЗ-21214 ДФ формирует импульс, когда в BMT на такте сжатия находится четвертый цилиндр.

Датчик скорости (ДС)

Для работы СУД необходима информация о движении автомобиля. О наличии движения и скорости автомобиля контроллер делает вывод по сигналам с датчика скорости. Он устанавливается на коробке передач и выдает шесть импульсов на один метр движения автомобиля. В этом датчике также используется эффект Холла, а выходные параметры сигналов идентичны сигналам датчика фаз. Задающим элементом служит установленный на внутренней оси датчика диск с закрепленным на нем многополюсным магнитом или шторка с шестью прорезями. Существуют два типа датчиков скорости: проходные и непроходные. Проходные устанавливаются в разрыв крепления троса привода спидометра. Непроходные датчики устанавливаются в автомобилях с электронной комбинацией приборов. В этом случае сигнал с датчика скорости подается не только в контроллер системы управления двигателем, но и на электронную комбинацию.

Датчик кислорода (Лямбда-зонд)

Датчик кислорода предназначен для определения концентрации кислорода в отработавших газах, состав которых зависит от соотношения топлива и воздуха в смеси, подаваемой в цилиндры двигателя. Информация, которую выдает датчик в виде напряжения (или изменения сопротивления), используется электронным блоком управления впрыском (или карбюратором) для корректировки количества подаваемого топлива. Для полного сгорания 1 кг топлива необходимо 14,7 кг воздуха. Такой состав топливо-воздушной смеси называют стехиометрическим, он обеспечивает наименьшее содержание токсичных веществ в отработавших газах и, соответственно, эффективное их "дожигание" в каталитическом нейтрализаторе.
Для оценки состава топливо-воздушной смеси используют коэффициент избытка воздуха - отношение количества воздуха, поступившего в цилиндры, к количеству воздуха, теоретически необходимого для полного сгорания топлива. В мировой практике этот коэффициент называют лямбда. При стехиометрической смеси лямбда = 1, если лямбда < 1 (недостаток воздуха), смесь называют богатой, при лямбда >1 (избыток воздуха) смесь называют бедной. Наибольшая экономичность при полностью открытой дроссельной заслонке бензинового двигателя достигается при лямбда=1,1-1,3. Максимальная мощность обеспечивается, когда лямбда =0,85-0,9.
Основная часть датчика - керамический наконечник, сделанный на основе диоксида циркония, на внутреннюю и наружную поверхности которого методом напыления наносится платина. Соединение наконечника и корпуса выполнено полностью герметичным во избежание попадания отработавших газов во внутреннюю полость датчика, сообщающуюся с атмосферой. Керамический наконечник находится в потоке отработавших газов, поступающих через отверстия в защитном экране. Эффективная работа датчика возможна при температуре не ниже 300-350'С. Поэтому, для быстрого прогрева после пуска двигателя, современные датчики снабжают электрическим нагревательным элементом, представляющим из себя керамический стержень со спиралью накаливания внутри. Датчики кислорода с различным количеством проводов: провод сигнала, провод "массы" сигнала, провод питания подогрева, провод "массы" подогрева. Датчики без нагревателя могут иметь один, или два сигнальных провода, датчики со встроенным электрическим нагревателем - три или четыре провода. Как правило, провода светлых цветов относятся к нагревателю, а темных - к сигнальному проводу. Все элементы датчика кислорода изготовлены из жаростойких материалов, так как его рабочая температура может достигать 950°С. Выходящие провода имеют термостойкую изоляцию.
В связи с тем, что датчик кислорода может вырабатывать электрический сигнал только при температуре 300-350°С и выше, датчики без нагревателя устанавливаются в выпускном трубопроводе ближе к двигателю, а с нагревательными элементами - перед нейтрализатором. В некоторых автомобилях в каталитическом нейтрализаторе установлен датчик температуры, который не следует путать с кислородным. Иногда устанавливается два кислородных датчика - до нейтрализатора и после него.
Датчики кислорода бывают одно-, двух-, трех- и четырехпроводные. Однопроводные и двухпроводные датчики применялись в самых первых системах впрыска с обратной связью (лямбда-регулированием). Однопроводный датчик имеет только один провод, который является сигнальным. Земля этго датчика выведена на корпус и приходит на массу двигателя через резьбовое соединение.
- Двухпроводный датчик отличается от однопроводного наличием отдельного земляного провода сигнальной цепи. Недостатки таких зондов: рабочий диапазон температуры датчика начинается от 300 градусов. До достижения этой температуры датчик не работает и не выдает сигнала. Стало быть необходимо устанавливать этот датчик как можно ближе к цилиндрам двигателя, чтобы он подогревался и обтекался наиболее горячим потоком выхлопных газов. Процесс нагрева датчика затягивается и это вносит задержку в момент включения обратной связи в работу контроллера. Кроме того, использование самой трубы в качестве проводника сигнала (земля) требует нанесения на резьбу специальной токопроводящей смазки при установке датчика в выхлопной трубопровод и увеличивает вероятность сбоя (отсутствия контакта) в цепи обратной связи.
Указанных недостатков лишены трех- и четырехпроводные лямбда зонды. В трехпроводный добавлен специальный нагревательный элемент, который включен как правило всегда при работе двигателя и, тем самым, сокращает время выхода датчика на рабочую температуру. А так же позволяет устанавливать лямбда-зонд на удалении от выхлопного коллектора, рядом с катализатором. Однако остается один недостаток - токопроводящий выхлопной коллектор и необходимость в токопроводящей смазке. Этого недостатка лишен четырехпроводный лямбда-зонд - у него все провода служат для своих целей - два на подогрев, а два - сигнальные. При этом вкручивать его можно так как заблагорассудится.
Несколько слов о взаимозаменяемости датчиков. Лямбда-зонд с подогревом может устанавливаться вместо такого же, но без подогрева. При этом необходимо смонтировать на автомобиль цепь подогрева и подключить ее к цепи, запитываемой при включении зажигания. Самое выгодное - в параллель к цепи питания электробензонасоса. Не допускается обратная замена - установка однопроводного датчика вместо трех- и более- проводных. Работать не будет. Ну и конечно необходимо, чтобы резьба датчика совпадала с резьбой, нарезанной в штуцере.
Функционально датчик кислорода работает, как переключатель и выдает напряжение выше порогового (0.45V) при низком содержании кислорода в выхлопных газах. При высоком уровне кислорода датчик снижает это пороговое напряжение. При этом, важным параметром является скорость переключения. В большинстве систем впрыска топлива датчик кислорода имеет выходное напряжение от 40-100мВ. до 0.7-1В. Длительность фронта должна быть не более 120мСек.
Следует отметить, что многие неисправности датчика кислорода контроллерами не фиксируются и судить о его исправной работе можно только после соответствующей проверки осцилографом.
Однако,в некоторых контроллерах предусмотрена возможность диагностики и обнаружения неисправности по косвенным признакам (соотношение показаний датчика скорости автомобиля или датчика положения коленвала, датчика положения дроссельной заслонки, расходомера воздуха и др.).
При обнаружении неисправности датчика кислорода, контроллер переходит в режим управления впрыском по усредненным параметрам и завышает обогащение топливной смеси в сравнении с обычным ее составом (~1:14.7).
Причины выхода из строя датчика кислорода -Применение этилированного бензина.
-Использование при установке датчика герметиков, вулканизирующихся при комнатной температуре или содержащих в своем составе силикон.
-Перегрев датчика из-за неправильно установленного угла опережения зажигания, переобогащения топливо-воздушной смеси, перебоев в зажигании и т.д.
-Многократные (неудачные) попытки запуска двигателя через небольшие промежутки времени, что приводит к накапливанию несгоревшего топлива в выпускном трубопроводе, которое может воспламениться с образованием ударной волны.
-Проверка работы цилиндров двигателя с отключением свечей зажигания.
-Попадание на керамический наконечник датчика любых эксплуатационных жидкостей, растворителей и моющих средств.
-Обрыв, плохой контакт или замыкание на "массу" выходной цепи датчика.
-Негерметичность в выпускной системе.
Возможные признаки неисправности датчика кислорода -Неустойчивая работа двигателя на малых оборотах.
-Повышенный расход топлива.
-Ухудшение динамических характеристик автомобиля.
-Характерное потрескивание в районе расположения каталитического нейтрализатора после остановки двигателя.
-Повышение температуры в районе каталитического нейтрализатора или его нагрев до раскаленного состояния.
-На некоторых автомобилях загорание лампы "СНЕСК ЕNGINЕ" при установившемся режиме движения. Правила снятия и установки датчика
Демонтаж датчика, во избежание повреждений, производят только на холодном двигателе, перед этим отсоединяют провода датчика (при выключенном зажигании).
Перед заменой датчика необходимо проверить его маркировку, которая должна соответствовать указанной в инструкции по эксплуатации автомобиля.
Производят внешний осмотр, чтобы убедиться в отсутствии механических повреждений, проверить наличие уплотнительного кольца и проверить наличие на резьбовой части специальной противопригарной смазки. Заворачивают от руки датчик кислорода до упора и затягивают с усилием 3,5-4,5 кгм. Соединение должно быть герметичным.
Соединяют электрический разъем (разъемы). Проверяют работоспособность по контролируемым параметрам. В некоторых случаях датчик крепится к выпускному трубопроводу с помощью специальной пластины. Между пластиной и выпускным трубопроводом должна находиться специальная герметизирующая прокладка. Основные контролируемые параметры Проверка параметров датчика кислорода осуществляется при достижении им рабочей температуры (350+50°С) с использованием газоанализатора, осциллографа, цифрового вольтметра и омметра.

Яндекс.Метрика

(c) 2009 авторемонт